Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Clin Lab ; 69(4)2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2291467

ABSTRACT

BACKGROUND: During viral infections such as SARS-CoV-2, epigenetic changes within the promoter region of the immune system genes would possibly occur and have an effect on the immune system response as well as disease outcome. We aimed to evaluate and compare the methylation level of the IFITM1 gene promoter in different stages of COVID-19 disease with a healthy control group. METHODS: In this cross-sectional study, 75 COVID-19 patients (25 mild, 25 severe, and 25 critical in addition to 25 age- and gender-matched healthy volunteers) have been included. DNA was extracted from the peripheral white blood cells using a commercial DNA extraction kit. PCR was performed using two types of primers designed for the methylated and unmethylated forms of the IFITM1 gene promoter. RESULTS: The mean age of the patient and healthy volunteer groups was 52.733 ± 13.780 and 49.120 ± 12.490, respectively. Out of a hundred participants, 52 were male. The results demonstrated that severe (p = 0.03, OR 6.729) and critical (p = 0.001, OR 11.156) patients were much more likely to show methylation of the IFITM1 gene in contrast with mild patients. Moreover, IFITM1 methylation was significantly higher in COVID-19 patients in comparison with the healthy volunteer group (p = 0.004, OR 3.17). Furthermore, IFITM1 methylation in male patients with critical status, (p = 0.01) was significantly higher than in male patients with mild status. In addition, IFITM1 methylation of male (p = 0.03) and female (p = 0.01) critical patients was considerably higher compared to males and females of volunteer group. CONCLUSIONS: Increased methylation of the IFITM1 gene in the severe and critical stage of COVID-19 diseases may indicate the role of SARS-CoV-2 infection in increasing methylation of this antiviral gene. This might be involved in suppressing the immune system, promoting SARS-CoV-2 replication and disease outcome.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/genetics , SARS-CoV-2 , Methylation , Cross-Sectional Studies , Promoter Regions, Genetic , DNA Methylation
2.
mBio ; 14(2): e0335922, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2268927

ABSTRACT

The molecular mechanisms underlying how SUD2 recruits other proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to exert its G-quadruplex (G4)-dependent pathogenic function is unknown. Herein, Nsp5 was singled out as a binding partner of the SUD2-N+M domains (SUD2core) with high affinity, through the surface located crossing these two domains. Biochemical and fluorescent assays demonstrated that this complex also formed in the nucleus of living host cells. Moreover, the SUD2core-Nsp5 complex displayed significantly enhanced selective binding affinity for the G4 structure in the BclII promoter than did SUD2core alone. This increased stability exhibited by the tertiary complex was rationalized by AlphaFold2 and molecular dynamics analysis. In line with these molecular interactions, downregulation of BclII and subsequent augmented apoptosis of respiratory cells were both observed. These results provide novel information and a new avenue to explore therapeutic strategies targeting SARS-CoV-2. IMPORTANCE SUD2, a unique protein domain closely related to the pathogenesis of SARS-CoV-2, has been reported to bind with the G-quadruplex (G4), a special noncanonical DNA structure endowed with important functions in regulating gene expression. However, the interacting partner of SUD2, among other SARS-CoV-2 Nsps, and the resulting functional consequences remain unknown. Here, a stable complex formed between SUD2 and Nsp5 was fully characterized both in vitro and in host cells. Moreover, this complex had a significantly enhanced binding affinity specifically targeting the Bcl2G4 in the promoter region of the antiapoptotic gene BclII, compared with SUD2 alone. In respiratory epithelial cells, the SUD2-Nsp5 complex promoted BclII-mediated apoptosis in a G4-dependent manner. These results reveal fresh information about matched multicomponent interactions, which can be parlayed to develop new therapeutics for future relevant viral disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Promoter Regions, Genetic , Epithelial Cells , Apoptosis
3.
Endocr Regul ; 57(1): 53-60, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2281880

ABSTRACT

Objective. Nowadays, type 2 diabetes mellitus (T2D) is the most common chronic endocrine disorder affecting an estimated 5-10% of adults worldwide, and this disease also rapidly increased among the population in the Kurdistan region. This research aims to identify DNA methylation change in the TCF7L2 gene as a possible predictive T2D biomarker. Methods. One hundred and thirteen participants were divided into three groups: diabetic (47), prediabetic (36), and control (30). The study was carried out in patients who visited the private clinical sector between August and December 2021 in Koya city (Iraq Kurdistan region) to determine DNA methylation status using a methylation-specific PCR (MSP) with paired primers for each methylated and non-methylated region. In addition, the X2 Kruskal-Wallis statistical and Wilcoxon signed-rank tests were used, p<0.05 was considered significant. Results. The results showed hypermethylation of DNA in the promoter region in diabetic and prediabetic groups compared to the healthy controls. Different factors affected the DNA methylation level, including body max index, alcohol consumption, family history, and physical activity with the positive Coronavirus. Conclusion. The results obtained indicate that DNA methylation changes in the TCF7L2 promoter region may be used as a potential predictive biomarker of the T2D diagnosis. However, the findings obtained in this study should be supported by additional data.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Adult , Humans , DNA Methylation/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Prediabetic State/diagnosis , Prediabetic State/genetics , Iraq , Promoter Regions, Genetic/genetics , Polymerase Chain Reaction/methods , Biomarkers , Transcription Factor 7-Like 2 Protein/genetics
5.
Immunobiology ; 227(6): 152301, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2119151

ABSTRACT

Coronavirus disease-19 (COVID-19) has recently emerged as a respiratory infection with a significant impact on health and society. The pathogenesis is primarily attributed to a dysregulation of cytokines, especially those with pro-inflammatory and anti-inflammatory effects. Interleukin-38 (IL-38) is a recently identified anti-inflammatory cytokine with a proposed involvement in mediating COVID-19 pathogenesis, while the association between IL38 gene variants and disease susceptibility has not been explored. Therefore, a pilot study was designed to evaluate the association of three gene variants in the promoter region of IL38 gene (rs7599662 T/A/C/G, rs28992497 T/C and rs28992498 C/A/T) with COVID-19 risk. DNA sequencing was performed to identify these variants. The study included 148 Iraqi patients with COVID-19 and 113 healthy controls (HC). Only rs7599662 showed a significant negative association with susceptibility to COVID-19. The mutant T allele was presented at a significantly lower frequency in patients compared to HC. Analysis of recessive, dominant and codominant models demonstrated that rs7599662 TT genotype frequency was significantly lower in patients than in HC. In terms of haplotypes (in order: rs7599662, rs28992497 and rs28992498), frequency of CTC haplotype was significantly increased in patients compared to HC, while TTC haplotype showed significantly lower frequency in patients. The three SNPs influenced serum IL-38 levels and homozygous genotypes of mutant alleles were associated with elevated levels. In conclusion, this study indicated that IL38 gene in terms of promoter variants and haplotypes may have important implications for COVID-19 risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , Genotype , Pilot Projects , Iraq , Case-Control Studies , Promoter Regions, Genetic/genetics , Polymorphism, Single Nucleotide , Alleles , Haplotypes , Cytokines/genetics , Interleukins/genetics , Genetic Predisposition to Disease , Gene Frequency
6.
Clin Lab ; 68(10)2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2080867

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to a pandemic in March 2020. During a viral infection, it has been reported that epigenetic changes occur for both sides: Infected cells elicit an antiviral environmental response, which induces and initiates certain pathways for proper response to the virus, while the virus silences the expression of vital genes in the anti-viral host cell. In this study, we aimed to examine the methylation level of the MX1 gene promoter in different stages in COVID-19 patients compared to the control group. METHODS: In total, 470 COVID-19 patients with a positive polymerase chain reaction (PCR) test (235 women and 235 men) were recruited into the study as the test group. Patients were divided based on the World Health Organization (WHO) classification into three groups: moderate, severe, and critical. Moreover, 100 healthy individuals (50 women and 50 men) were selected as the control group. Peripheral white blood cells were collected and PCR was performed using two types of primers designed for methylated and unmethylated states of the MX1 gene. The PCR products were then loaded on agarose gel and the band intensities were calculated by ImageJ software. RESULTS: The results showed a decrease in the methylation of the MX1 gene promoter in moderate and severe groups and an increase in the MX1 gene promoter methylation in the critical group. In addition, the level of methylation was higher in men than in women. CONCLUSIONS: Increased methylation of the MX1 gene in the critical group may indicate the role of SARS-CoV-2 in reducing the expression levels of this antiviral gene and thus promoting virus replication and disease progression.


Subject(s)
COVID-19 , DNA Methylation , Myxovirus Resistance Proteins , Female , Humans , Male , COVID-19/genetics , Myxovirus Resistance Proteins/genetics , SARS-CoV-2 , Promoter Regions, Genetic , Sex Factors
7.
Transgenic Res ; 31(4-5): 525-535, 2022 10.
Article in English | MEDLINE | ID: covidwho-1990731

ABSTRACT

In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.


Subject(s)
Angiotensin-Converting Enzyme 2 , Mice, Transgenic , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19 , Disease Models, Animal , Humans , Mice , Peptide Elongation Factor 1/genetics , Promoter Regions, Genetic , SARS-CoV-2/genetics , Transgenes
8.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: covidwho-1934078

ABSTRACT

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) initiates the cytokine/chemokine storm-mediated lung injury. The SARS-CoV unique domain (SUD) with three macrodomains (N, M, and C), showing the G-quadruplex binding activity, was examined the possible role in SARS pathogenesis in this study. The chemokine profile analysis indicated that SARS-CoV SUD significantly up-regulated the expression of CXCL10, CCL5 and interleukin (IL)-1ß in human lung epithelial cells and in the lung tissues of the mice intratracheally instilled with the recombinant plasmids. Among the SUD subdomains, SUD-MC substantially activated AP-1-mediated CXCL10 expression in vitro. In the wild type mice, SARS-CoV SUD-MC triggered the pulmonary infiltration of macrophages and monocytes, inducing CXCL10-mediated inflammatory responses and severe diffuse alveolar damage symptoms. Moreover, SUD-MC actuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-dependent pulmonary inflammation, as confirmed by the NLRP3 inflammasome inhibitor and the NLRP3-/- mouse model. This study demonstrated that SARS-CoV SUD modulated NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation, providing the potential therapeutic targets for developing the antiviral agents.


Subject(s)
Chemokine CXCL10/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Proteins/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Chemokine CXCL10/genetics , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pneumonia/pathology , Pneumonia/virology , Promoter Regions, Genetic , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Up-Regulation , Viral Proteins/chemistry , Viral Proteins/genetics
9.
Dis Markers ; 2022: 6780710, 2022.
Article in English | MEDLINE | ID: covidwho-1868808

ABSTRACT

Background: To date (14 January 2022), the incidence and related mortality rate of COVID-19 in America, Europe, and Asia despite administrated of billions doses of many approved vaccines are still higher than in Egypt. Epigenetic alterations mediate the effects of environmental factors on the regulation of genetic material causing many diseases. Objective: We aimed to explore the methylation status of HeyL promoter, a downstream transcription factor in Notch signal, an important regulator of cell proliferation and differentiation blood, pulmonary epithelial, and nerves cells. Methods: Our objective was achieved by DNA sequencing of the product from methyl-specific PCR of HeyL promoter after bisulfite modification of DNA extracted from the blood samples of 30 COVID-19 patients and 20 control health subjects and studying its association with clinical-pathological biomarkers. Results: We found that the HeyL promoter was partial-methylated in Egyptian COVID-19 patients and control healthy subjects compared to full methylated one that was published in GenBank. We identified unmethylated CpG (TG) flanking the response elements within HeyL promoter in Egyptian COVID-19 patients and control healthy subjects vs. methylated CpG (CG) in reference sequence (GenBank). Also, we observed that the frequency of partial-methylated HeyL promoter was higher in COVID-19 patients and associated with aging, fever, severe pneumonia, ageusia/anosmia, and dry cough compared to control healthy subjects. Conclusion: We concluded that hypomethylated HeyL promoter in Egyptian population may facilitate the binding of transcription factors to their binding sites, thus enhancing its regulatory action on the blood, pulmonary epithelium, and nerves cells in contrast to full methylated one that was published in GenBank; thus, addition of demethylating agents to the treatment protocol of COVID-19 may improve the clinical outcomes. Administration of therapy must be based on determination of methylation status of HeyL, a novel prognostic marker for severe illness in COVID-19 patients.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , COVID-19 , Repressor Proteins , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , COVID-19/genetics , DNA Methylation , Egypt/epidemiology , Humans , Promoter Regions, Genetic , Repressor Proteins/genetics
10.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: covidwho-1820426

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2, SARS2) remains a great global health threat and demands identification of more effective and SARS2-targeted antiviral drugs, even with successful development of anti-SARS2 vaccines. Viral replicons have proven to be a rapid, safe, and readily scalable platform for high-throughput screening, identification, and evaluation of antiviral drugs against positive-stranded RNA viruses. In the study, we report a unique robust HIV long terminal repeat (LTR)/T7 dual-promoter-driven and dual-reporter firefly luciferase (fLuc) and green fluorescent protein (GFP)-expressing SARS2 replicon. The genomic organization of the replicon was designed with quite a few features that were to ensure the replication fidelity of the replicon, to maximize the expression of the full-length replicon, and to offer the monitoring flexibility of the replicon replication. We showed the success of the construction of the replicon and expression of reporter genes fLuc and GFP and SARS structural N from the replicon DNA or the RNA that was in vitro transcribed from the replicon DNA. We also showed detection of the negative-stranded genomic RNA (gRNA) and subgenomic RNA (sgRNA) intermediates, a hallmark of replication of positive-stranded RNA viruses from the replicon. Lastly, we showed that expression of the reporter genes, N gene, gRNA, and sgRNA from the replicon was sensitive to inhibition by Remdesivir. Taken together, our results support use of the replicon for identification of anti-SARS2 drugs and development of new anti-SARS strategies targeted at the step of virus replication.


Subject(s)
Replicon , SARS-CoV-2 , Antiviral Agents/pharmacology , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Replication/drug effects
11.
Egypt J Immunol ; 29(2): 1-9, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1790704

ABSTRACT

SARS-CoV-2 is the causative agent of coronavirus disease started in 2019 (COVID-19). IL-6 gene is located on chromosome 7. A considerable number of polymorphisms was identified in the IL-6 gene. Polymorphism in IL-6-174C allele is associated with a higher level of IL-6 production and this may lead to severity of in COVID-19 patients. We intended to investigate the role of polymorphism in the promotor region of IL-6 gene as a predictor for disease severity in COVID-19 patients. Fifty patients diagnosed with COVID-19 and classified into moderate and severe groups and twenty apparently healthy controls were enrolled in the study. Genotyping for IL-6 gene (-174G/C) was done by using TaqMan SNP genotyping assay for all studied groups. The distribution of different IL-6-174G/C genotypes among COVID-19 patients was 76% for GG genotype, 22% for GC genotype and 2% for CC genotype. Whereas the distribution of genotypes among the control group was 80% for GG genotype, 20% for GC genotype and 0.0% for CC genotype. The G allele distribution was 87% and 90% in the patients and control groups, respectively, while the C allele was 13% and 10% in the patients and control groups, respectively. There was no significant statistical association between different genotypes, severity and treatment outcome in the patients group. In conclusion, this study showed no relation between -174G/C IL-6 gene polymorphism and disease, in COVID-19 patients. Keywords: Interleukin-6, Promotor region, Polymorphism, COVID-19, Severity.


Subject(s)
COVID-19 , Interleukin-6/genetics , COVID-19/genetics , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , SARS-CoV-2
12.
Sci Immunol ; 7(67): eabl9929, 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1673341

ABSTRACT

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model's usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2­infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/physiopathology , Disease Models, Animal , Encephalitis, Viral/prevention & control , Keratin-18/genetics , Nasal Sprays , SARS-CoV-2/physiology , Administration, Inhalation , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Encephalitis, Viral/mortality , Epithelial Cells/metabolism , Female , Humans , Keratin-18/metabolism , Lung/immunology , Lung/pathology , Lung/physiopathology , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic/genetics , Transcriptome , Virus Replication
13.
J Virol ; 96(1): e0096421, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1631789

ABSTRACT

A comprehensive analysis and characterization of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection model that mimics non-severe and severe coronavirus disease 2019 (COVID-19) in humans is warranted for understating the virus and developing preventive and therapeutic agents. Here, we characterized the K18-hACE2 mouse model expressing human (h)ACE2 in mice, controlled by the human keratin 18 (K18) promoter, in the epithelia, including airway epithelial cells where SARS-CoV-2 infections typically start. We found that intranasal inoculation with higher viral doses (2 × 103 and 2 × 104 PFU) of SARS-CoV-2 caused lethality of all mice and severe damage of various organs, including lung, liver, and kidney, while lower doses (2 × 101 and 2 × 102 PFU) led to less severe tissue damage and some mice recovered from the infection. In this hACE2 mouse model, SARS-CoV-2 infection damaged multiple tissues, with a dose-dependent effect in most tissues. Similar damage was observed in postmortem samples from COVID-19 patients. Finally, the mice that recovered from infection with a low dose of virus survived rechallenge with a high dose of virus. Compared to other existing models, the K18-hACE2 model seems to be the most sensitive COVID-19 model reported to date. Our work expands the information available about this model to include analysis of multiple infectious doses and various tissues with comparison to human postmortem samples from COVID-19 patients. In conclusion, the K18-hACE2 mouse model recapitulates both severe and non-severe COVID-19 in humans being dose-dependent and can provide insight into disease progression and the efficacy of therapeutics for preventing or treating COVID-19. IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19) has reached nearly 240 million cases, caused nearly 5 million deaths worldwide as of October 2021, and has raised an urgent need for the development of novel drugs and therapeutics to prevent the spread and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, an animal model that recapitulates the features of human COVID-19 disease progress and pathogenesis is greatly needed. In this study, we have comprehensively characterized a mouse model of SARS-CoV-2 infection using K18-hACE2 transgenic mice. We infected the mice with low and high doses of SARS-CoV-2 to study the pathogenesis and survival in response to different infection patterns. Moreover, we compared the pathogenesis of the K18-hACE2 transgenic mice with that of the COVID-19 patients to show that this model could be a useful tool for the development of antiviral drugs and therapeutics.


Subject(s)
COVID-19/pathology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Humans , Immune Sera/immunology , Keratin-18/genetics , Mice , Mice, Transgenic , Promoter Regions, Genetic , Reinfection/immunology , Reinfection/mortality , Reinfection/pathology , Reinfection/virology , SARS-CoV-2/immunology , Viral Proteins/genetics , Viral Proteins/metabolism
14.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1572666

ABSTRACT

Gene therapy is currently in the public spotlight. Several gene therapy products, including oncolytic virus (OV), which predominantly replicates in and kills cancer cells, and COVID-19 vaccines have recently been commercialized. Recombinant adenoviruses, including replication-defective adenoviral vector and conditionally replicating adenovirus (CRA; oncolytic adenovirus), have been extensively studied and used in clinical trials for cancer and vaccines. Here, we review the biology of wild-type adenoviruses, the methodological principle for constructing recombinant adenoviruses, therapeutic applications of recombinant adenoviruses, and new technologies in pluripotent stem cell (PSC)-based regenerative medicine. Moreover, this article describes the technology platform for efficient construction of diverse "CRAs that can specifically target tumors with multiple factors" (m-CRAs). This technology allows for modification of four parts in the adenoviral E1 region and the subsequent insertion of a therapeutic gene and promoter to enhance cancer-specific viral replication (i.e., safety) as well as therapeutic effects. The screening study using the m-CRA technology successfully identified survivin-responsive m-CRA (Surv.m-CRA) as among the best m-CRAs, and clinical trials of Surv.m-CRA are underway for patients with cancer. This article also describes new recombinant adenovirus-based technologies for solving issues in PSC-based regenerative medicine.


Subject(s)
Adenoviridae Infections/virology , Adenoviridae/genetics , Adenoviridae/physiology , COVID-19/prevention & control , Genetic Therapy , Animals , COVID-19 Vaccines , Cell Line, Tumor , Gene Expression , Genetic Vectors , Humans , Immunotherapy , Oncolytic Viruses/genetics , Pluripotent Stem Cells , Promoter Regions, Genetic , SARS-CoV-2 , Survivin , Virus Replication
15.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518198

ABSTRACT

A substantial proportion of patients who have recovered from coronavirus disease-2019 (COVID-19) experience COVID-19-related symptoms even months after hospital discharge. We extensively immunologically characterized patients who recovered from COVID-19. In these patients, T cells were exhausted, with increased PD-1+ T cells, as compared with healthy controls. Plasma levels of IL-1ß, IL-1RA, and IL-8, among others, were also increased in patients who recovered from COVID-19. This altered immunophenotype was mirrored by a reduced ex vivo T cell response to both nonspecific and specific stimulation, revealing a dysfunctional status of T cells, including a poor response to SARS-CoV-2 antigens. Altered levels of plasma soluble PD-L1, as well as of PD1 promoter methylation and PD1-targeting miR-15-5p, in CD8+ T cells were also observed, suggesting abnormal function of the PD-1/PD-L1 immune checkpoint axis. Notably, ex vivo blockade of PD-1 nearly normalized the aforementioned immunophenotype and restored T cell function, reverting the observed post-COVID-19 immune abnormalities; indeed, we also noted an increased T cell-mediated response to SARS-CoV-2 peptides. Finally, in a neutralization assay, PD-1 blockade did not alter the ability of T cells to neutralize SARS-CoV-2 spike pseudotyped lentivirus infection. Immune checkpoint blockade ameliorates post-COVID-19 immune abnormalities and stimulates an anti-SARS-CoV-2 immune response.


Subject(s)
COVID-19/complications , Cytokines/immunology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Case-Control Studies , Cytokines/drug effects , DNA Methylation , Female , Humans , Immunophenotyping , In Vitro Techniques , Interleukin 1 Receptor Antagonist Protein/drug effects , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1beta/drug effects , Interleukin-1beta/immunology , Interleukin-8/drug effects , Interleukin-8/immunology , Male , MicroRNAs/metabolism , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Promoter Regions, Genetic , Post-Acute COVID-19 Syndrome
16.
J Virol ; 95(12)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1501541

ABSTRACT

Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.


Subject(s)
Endogenous Retroviruses/physiology , Retroelements , Virus Diseases/immunology , Animals , Endogenous Retroviruses/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Humans , Immunity, Cellular , Promoter Regions, Genetic , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Receptors, Pattern Recognition/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Viral Proteins/metabolism , Virion/metabolism , Virus Diseases/genetics , Virus Diseases/virology
17.
J Virol ; 95(13): e0019221, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1486499

ABSTRACT

Understanding factors that affect the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is central to combatting coronavirus disease 2019 (COVID-19). The virus surface spike protein of SARS-CoV-2 mediates viral entry into cells by binding to the ACE2 receptor on epithelial cells and promoting fusion. We found that Epstein-Barr virus (EBV) induces ACE2 expression when it enters the lytic replicative cycle in epithelial cells. By using vesicular stomatitis virus (VSV) particles pseudotyped with the SARS-CoV-2 spike protein, we showed that lytic EBV replication enhances ACE2-dependent SARS-CoV-2 pseudovirus entry. We found that the ACE2 promoter contains response elements for Zta, an EBV transcriptional activator that is essential for EBV entry into the lytic cycle of replication. Zta preferentially acts on methylated promoters, allowing it to reactivate epigenetically silenced EBV promoters from latency. By using promoter assays, we showed that Zta directly activates methylated ACE2 promoters. Infection of normal oral keratinocytes with EBV leads to lytic replication in some of the infected cells, induces ACE2 expression, and enhances SARS-CoV-2 pseudovirus entry. These data suggest that subclinical EBV replication and lytic gene expression in epithelial cells, which is ubiquitous in the human population, may enhance the efficiency and extent of SARS-CoV-2 infection of epithelial cells by transcriptionally activating ACE2 and increasing its cell surface expression. IMPORTANCE SARS-CoV-2, the coronavirus responsible for COVID-19, has caused a pandemic leading to millions of infections and deaths worldwide. Identifying the factors governing susceptibility to SARS-CoV-2 is important in order to develop strategies to prevent SARS-CoV-2 infection. We show that Epstein-Barr virus, which infects and persists in >90% of adult humans, increases susceptibility of epithelial cells to infection by SARS-CoV-2. EBV, when it reactivates from latency or infects epithelial cells, increases expression of ACE2, the cellular receptor for SARS-CoV-2, enhancing infection by SARS-CoV-2. Inhibiting EBV replication with antivirals may therefore decrease susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Epithelial Cells/virology , Herpesvirus 4, Human/physiology , SARS-CoV-2/physiology , Virus Internalization , Virus Replication , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , DNA Methylation , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Promoter Regions, Genetic , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Trans-Activators/metabolism , Virus Activation
18.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: covidwho-1467276

ABSTRACT

The three classes of interferons (IFNs) share the ability to inhibit viral replication, activating cell transcriptional programs that regulate both innate and adaptive responses to viral and intracellular bacterial challenge. Due to their unique potency in regulating viral replication, and their association with numerous autoimmune diseases, the tightly orchestrated transcriptional regulation of IFNs has long been a subject of intense investigation. The protective role of early robust IFN responses in the context of infection with SARS-CoV-2 has further underscored the relevance of these pathways. In this viewpoint, rather than focusing on the downstream effects of IFN signaling (which have been extensively reviewed elsewhere), we will summarize the historical and current understanding of the stepwise assembly and function of factors that regulate IFNß enhancer activity (the "enhanceosome") and highlight opportunities for deeper understanding of the transcriptional control of the ifnb gene.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Host-Pathogen Interactions/physiology , Interferon-beta/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Enhancer Elements, Genetic , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H5N1 Subtype/pathogenicity , Interferon-beta/metabolism , Promoter Regions, Genetic , SARS-CoV-2/pathogenicity , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1463708

ABSTRACT

Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.


Subject(s)
Aggression , Hippocampus/metabolism , Inflammation/etiology , PPAR alpha/genetics , Social Isolation , Stress, Psychological , Aggression/psychology , Animals , Behavior, Animal , Chromatin Assembly and Disassembly , CpG Islands , Disease Models, Animal , Disease Susceptibility , Epigenesis, Genetic , Gene Expression , Inflammation/metabolism , Inflammation Mediators/metabolism , Male , Methylation , Mice , PPAR alpha/metabolism , Promoter Regions, Genetic , Signal Transduction
20.
Nucleic Acids Res ; 50(1): e4, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1450402

ABSTRACT

Efficient annotation of alterations in binding sequences of molecular regulators can help identify novel candidates for mechanisms study and offer original therapeutic hypotheses. In this work, we developed Somatic Binding Sequence Annotator (SBSA) as a full-capacity online tool to annotate altered binding motifs/sequences, addressing diverse types of genomic variants and molecular regulators. The genomic variants can be somatic mutation, single nucleotide polymorphism, RNA editing, etc. The binding motifs/sequences involve transcription factors (TFs), RNA-binding proteins, miRNA seeds, miRNA-mRNA 3'-UTR binding target, or can be any custom motifs/sequences. Compared to similar tools, SBSA is the first to support miRNA seeds and miRNA-mRNA 3'-UTR binding target, and it unprecedentedly implements a personalized genome approach that accommodates joint adjacent variants. SBSA is empowered to support an indefinite species, including preloaded reference genomes for SARS-Cov-2 and 25 other common organisms. We demonstrated SBSA by annotating multi-omics data from over 30,890 human subjects. Of the millions of somatic binding sequences identified, many are with known severe biological repercussions, such as the somatic mutation in TERT promoter region which causes a gained binding sequence for E26 transformation-specific factor (ETS1). We further validated the function of this TERT mutation using experimental data in cancer cells. Availability:http://innovebioinfo.com/Annotation/SBSA/SBSA.php.


Subject(s)
COVID-19/virology , Computational Biology/instrumentation , Genomics/instrumentation , Mutation , Proteomics/instrumentation , SARS-CoV-2 , 3' Untranslated Regions , Algorithms , Amino Acid Motifs , COVID-19/metabolism , Computational Biology/methods , Computers , Genetic Techniques , Genome, Human , Genomics/methods , Humans , Internet , MicroRNAs/metabolism , Phenotype , Promoter Regions, Genetic , Protein Binding , Proteomics/methods , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , RNA-Binding Proteins/metabolism , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL